
User Data Repository Design Supporting Internet of
Things

Anteneh Assen Adem

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of Science in

Technology.

Espoo 11.04.2018

Thesis supervisor:

Prof. Raimo Kantola

Thesis advisor:

Dr. Jose Costa-Requena

ii

AALTO UNIVERSITY ABSTRACT OF THE

SCHOOL OF ELECTRICAL ENGINEERING MASTER’S THESIS

Author: Anteneh Assen Adem

Title of the Thesis: User Data Repository Design Supporting Internet
of Things

Date: Language: English Number of pages:9+55

Department of Communications and Networking

Professorship: ELEC3029 - Communications Engineering

Supervisor: Prof. Raimo Kantola

Instructor: Dr. Jose Costa-Requena

Mobile devices comprise smart phones, sensors and actuators which are expected to

grow exponentially. Current mobile networks have been designed considering User

Equipment (UE) associated to a single user and is mostly used for people to people

communication. However, machine to machine communications have different

requirements which have not been considered until recent 3GPP standard

specifications. The Internet of Things (IoT) devices are autonomous, large in number

and often lacking user interface. This creates a challenge in managing them. Different

IoT management solutions has been proposed and implemented to solve the challenge.

3GPP started addressing this need in Narrow-Band IoT and Machine Type

Communication specifications. In this thesis we analyze proposed standards for

managing device subscriptions such as the User Data Convergence (UDC). Given the

limitations of UDC for managing IoT devices an extension that enables an operator

network to support the management of IoT devices is proposed. The solution is a User

Data Repository (UDR) extended with a data model and new design that facilitates IoT

device management. A prototype of the design was developed and tested to check the

feasibility. The results show the solution could work under the right setup.

Keywords: IoT management, UDR,

iii

Preface

I would like to thank my advisor Dr. Jose Costa-Requena and my supervisor Prof.

Raimo Kantola. Their guidance and patience has helped me a lot in improving and

finishing this thesis. I also want to thank Aalto university for giving me the study

opportunity and the support I got during my study.

Above all I want to thank my parents for their support and the positive role they have

played in my life.

iv

Contents

Preface ... iii

List of Figures .. vi

List of Tables .. vii

Abbreviations ... viii

1. Introduction ... 1

1.1 Motivation .. 1

1.2 Objective and scope ... 2

1.3 Structure ... 2

2. Background .. 3

2.1 User data repositories in mobile networks... 3

2.1.1 HLR/AUC .. 3

2.1.2 HSS .. 4

2.2 UDC ... 5

2.2.1 UDR ... 6

2.2.2 Application Front Ends .. 7

2.2.3 Ud interface ... 7

2.2.4 LDAP .. 9

2.2.5 SOAP .. 11

2.2.6 Information model .. 12

2.2.7 Data model .. 13

2.3 Internet of Things ... 13

2.3.1 3GPP on IoT ... 13

2.3.2 Challenges related to IoT devices and solutions ... 15

3. User Data Convergence Design ... 17

3.1 UDR information model ... 17

3.2 UDR data model ... 21

3.3 EPS HSS FE software design .. 22

3.3.1 FE Core module ... 23

3.3.2 FE S6a Interface module .. 24

3.3.3 FE LDAP Interface module .. 26

3.4 SOAP Subscription/Notification design .. 28

3.5 Summary of opensource libraries used .. 30

v

4. Extended Information Model ... 31

4.1 UDR information model for IoT device data ... 31

4.1.1 Extension for bulk subscription ... 31

4.1.2 Network supported management of IoT devices .. 34

4.1.3 IoT device specific data information model .. 36

4.2 UDR data model for IoT device data ... 37

4.3 Limitations of the model .. 37

5. Performance Results .. 38

5.1 UDC testbed .. 38

5.2 Customizations required on standard EPS network ... 39

5.2.1. AVPs extensions for IoT .. 39

5.2.2. Modified existing S6a commands and AVPs ... 41

5.3 Performance test setup .. 41

5.3.1 Performance test results ... 43

5.3.2 Analysis .. 47

5.4 Conclusion .. 50

6. Conclusions and Future Work ... 51

6.1 Summary .. 51

6.2 Future works ... 51

Reference ... 52

vi

List of Figures

Figure 1. Common Interfaces between HLR and CS and PS network elements 4

Figure 2. HSS logical functions and Interfaces [3] ... 5

Figure 3. UDC Architecture [5] .. 6

Figure 4. Example of Application FE message flow with UDR ... 7

Figure 5. LDAP update data operation on Ud interface [5] .. 8

Figure 6. Subscription to Notification on Ud interface [5] ... 8

Figure 7. Notification Request on Ud interface [5] ... 9

Figure 8. LDAP protocol stack [6] .. 9

Figure 9. Example of hierarchical tree structured directory entries .. 10

Figure 10. SOAP protocol layer [6] .. 12

Figure 11. CIoT optimization .. 15

Figure 12. UDC Core Common Baseline Information Model [32] .. 17

Figure 13. UDC Identifiers Common Baseline Information Model [32] .. 18

Figure 14. Converged Information Model .. 19

Figure 15. Information Model for EPS Service Profile .. 20

Figure 16. Root of the Tree-like UDR Data Model ... 21

Figure 17. Data model for End-User data ... 22

Figure 18. EPS HSS FE software architecture .. 23

Figure 19. SOAP Subscribe request .. 29

Figure 20. SOAP Notify Request .. 30

Figure 21. Object diagram for bulk subscription .. 32

Figure 22. Information Model for EPS Service Profile including IoT devices data 33

Figure 23. Information Model for IoT device specific data .. 37

Figure 24. Testbed setup ... 38

Figure 25. Testbed flow diagram... 42

Figure 26. ULR command processing Delay distribution for Test Case #1 - #6............................. 45

Figure 27. ULR command processing delay for Test Case #1 to #6 ... 46

Figure 28. LDAP modify request and ULR jitter comparison for Test Case #1 48

Figure 29. LDAP modify request and ULR jitter comparison for Test Case #2 49

vii

List of Tables

Table 1. Some comparison between LDAP Server and Relational Database 11

Table 2. Some UML Notations ... 12

Table 3. Summary of opensource libraries used.. 30

Table 4. The performance test includes the following test cases with different number of NB-IoT

devices and traditional UE. ... 43

Table 5. ULR processing delay test result for test scenarios #1 and #2 .. 44

Table 6. ULR processing delay test result for test scenarios #3 and #4 .. 44

Table 7. ULR processing delay test result for test scenarios #5 and #6 .. 44

Table 8. ULR processing delay test result for test scenarios #7 and #8 .. 44

Table 9. LDAP request processing delay for test scenario #5 ... 48

Table 10. LDAP request processing delay for test scenario #6 ... 48

viii

Abbreviations

API Application Programming Interface

APN Access Point Name

AUC Authentication Center

AVP Attribute Value Pair

CADDOT Context-aware Dynamic Discovery of Things

CS Circuit Switching

CIoT Cellular IoT

CP Control Plane

DHCP Dynamic Host Configuration Protocol

DN Distinguished Name

DNS Domain Name System

DS Directory Server

EC-GSM-IoT Extended Coverage GSM IoT

EPS Evolved Packet System

ETSI European Telecommunication Standard Institute

FE Front End

GPRS General Packet Radio Service

GSM Global System for Mobile communications

HLR Home Location Register

HSS Home Subscriber Server

HTTP Hypertext Transport Protocol

 IEEE Institute of Electrical and Electronics Engineers

IMS IP Multimedia Subsystem

IMSI International Mobile Subscriber Identity

IoT Internet of Things

 ITU International Telecommunication Union

LDAP Lightweight Directory Access Protocol

LTE Long-Term Evolution

LTE-M LTE Cat-M1

MME Mobility Management Entity

MSC Mobile Switching Center

MTC Machine Type Communication

NB-IoT Narrow Band IoT

PDN Packet Data Network

PS Packet Switching

RFID Radio-frequency Identification

SCEF Service Capability Exposure Function

SCTP Stream Control Transmission Protocol

SGSN Serving GPRS Support Node

SOAP Simple Object Access Protocol

SSDP Simple Service Discovery Protocol

ix

UDC User Data Convergence

UDR User Data Repository

UE User Equipment

ULA Update Location Answer

ULR Update Location Request

UML Unified Modeling Language

UP User Plane

UPnP Universal Plug and Play

URL Unified Resource Locator

USIM Universal Subscriber Identity Module

VoLTE Voice over Long-Term Evolution

VLR Visitor Location Register

XML Extensible Markup Language

 XMPP Extensible Messaging and Presence Protocol

1

1. Introduction

This chapter states the problems this thesis is attempting to solve. It presents briefly

the limitation of current technologies in solving the problems and proposes a solution.

Then it ends by presenting how the rest of the thesis is structured.

1.1 Motivation

In current mobile networks User Equipment (UE) is the mobile device connected to

the network. The UE is associated to a single user and is mostly used for people to

people communication. However, the latest Ericsson report indicates that “of the 29

billion connected devices by 2022, 18 billion will be IoT (or machine-to-machine)

devices” [1]. In 5G networks, machine to machine communications will produce a

significant part of the traffic in the system. Therefore, 5G mobile network is

envisioned as a key enabler of industrial internet and machine to machine

communications. The concept of UE will include not only personal mobile devices

but also sensors and actuators that have different communication requirements. One

main difference is that IoT devices will often not have a user interface. This creates

the problem of configuring the devices manually. Moreover, a single user could have

several personal UE devices in addition to a lot of IoT devices under his subscription.

Managing all these devices (i.e. configuring and updating their software), is a non-

trivial task. IoT creates the need to process and manage the subscription data of these

devices in bulk. The future mobile network can play a key role in solving these

problems. It can facilitate the bulk subscription and over the air configuration of IoT

devices.

In the past the Home Location Register (HLR) in 2G/3G and later Home Subscriber

Server (HSS) in 4G were the only entities that stored and provided all the UE

information for authentication, location identification and service provisioning. These

systems are designed to store UE data for people to people communication. These

systems can be redesigned to store data by taking into consideration the needs of IoT

devices.

 3GPP has taken the first steps to redesign these storage systems and has defined the

concept of User Data Convergence (UDC). It separates the UE data storage from the

application logic that uses the data. The UDC requires a flexible data storage design

and simplicity of introducing new applications that access the data. The UDC

concepts could be used for managing the IoT devices and their subscription data.

2

1.2 Objective and scope

The objective of this thesis is to design a user data storage system for future mobile

networks that besides managing the traditional HSS data takes into consideration the

needs of IoT devices. This system is designed based on the UDC concept. It tries to

solve the following IoT device related problems.

➢ Bulk subscription of IoT devices

➢ Over the air configuration and software update of IoT devices

The proposed design behind the UDC concept consists of a User Data Repository

(UDR) for Evolved Packet System (EPS) and IP Multimedia Subsystem (IMS) users

that includes UE and IoT device subscription data. In addition, an EPS HSS

Application software is implemented based on the UDC concept to populate the IoT

subscription data into the UDR.

1.3 Structure

The rest of the thesis is structured in 5 chapters. Chapter 2 reviews the existing data

repositories used in the mobile networks in the past such as HLR, HSS. Then this

chapter presents the concept of UDC. Chapter 3 describes the design and prototype

implementation of UDC. Chapter 4 collects performance analysis and limitations of

the current UDC when used for managing end user and device information. In this

chapter initial testing of UDC with different EPCs, Narrow Band IoT (NB-IoT)

sensors is performed to identify further limitations in the current design when

managing large number of connected devices. This chapter proposes a solution for

supporting end user services and applications but also M2M communication. In this

chapter a solution on how to extend the usage of UDC to facilitate the deployment of

M2M communications is detailed. Finally, Chapter 5 provides conclusions and next

steps.

3

2. Background

This Chapter provides an overview of the current systems used for user data storage

and handling in mobile networks. The chapter explains the functionality of the HSS

and HLR used for storing user data in 2G, 3G. 4G mobile and IMS systems. The

limitations of these systems are also presented and the new UDC component proposed

by 3GPP to overcome those limitations is described in this chapter. In addition, some

basic description about information model and data model is presented.

2.1 User data repositories in mobile networks

The user data repositories in mobile networks were originally targeted to store user

credentials for authentication and authorization. These repositories have been

evolving over time and this section describes those repositories starting from the HLR

used in 2G followed by the HSS used in 3G and 4G later.

2.1.1 HLR/AUC

In 2G and 3G mobile networks, some permanent user data are stored in a network

element called HLR and Authentication Center (AUC). Home Location Register

(HLR) stores all permanent subscriber data (i.e. subscription information) and some

temporary subscriber data (e.g. Visitor Location Register (VLR) Number) for Circuit

Switching (CS) and Packet Switching (PS) domain of mobile networks. In addition to

storing subscriber data the HLR provides logical functions such as access

authorization, mobility management, call establishment support and facilitates a host

of services [2]. The HLR is located in the core network as shown in the Figure 1

together with other network elements like MSC and SGSN. The HLR communicates

with the Mobile Switching Center (MSC) and Serving GPRS Support Node (SGSN)

with standard interfaces define in [3].

Authentication center stores authentication information that is used to authenticate

subscribers of the PS and CS domain. The AUC transfers the authentication and

ciphering data of the visiting user to the other network elements through the HLR, see

Figure 1. The protocol used over the interface between the HLR and AUC, H-

interface, is nonstandard [3]. The term HLR/AUC is used to refer to an entity which

performs both the functionalities of an HLR and AUC

The protocols used on the interfaces depicted in Figure 1, except for the H-interface,

are all standard protocols.

4

Figure 1. Common Interfaces between HLR and CS and PS network elements

2.1.2 HSS

The mobile networks evolved and in the next releases 3G and 4G the HLR becomes

the Home Subscriber Server (HSS). The HSS is the heterogeneous master database

that stores user related information like user identification, user security information,

user location information and user service profile information. The CS and PS domain

HLR/AUC is a subset of the HSS. In addition to CS and PS domain users, HSS stores

data for IMS domain users. While storing heterogenous information, the HSS hides

the heterogeneity of the information from Application servers that access it. [3]. In

addition to storing user data, HSS provides logical functionalities such as mobility

management, user security information generation, service, and access authorization

for the CS, PS and IMS domain. It has a standard interface to enable network

elements found in the above-mentioned domains to communicate with it. Figure 2,

shows the logical functionalities of the HSS and standard interfaces between HSS and

other network elements. It also shows the location of the HSS in the core network and

interfaces with the rest of 3G and 4G network nodes.

5

Figure 2. HSS logical functions and Interfaces [3]

2.2 UDC

In 4G, the lack of convergence for storing user and service information was identified.

Thus, when adding IMS or Voice over Long-Term Evolution (VoLTE) services a new

HSS was proposed to store only the service information while another HSS was used

to store basic user security information. Therefore, over the past releases of mobile

networks the data has been scattered in different repositories. Currently user data is

stored in different network elements like the HLR, HSS, AUC and application servers.

As described in the previous section, these network elements are responsible for both

the storage and use of subscription and security data. Due to the lack of separation and

a standard interface between the application logic that accesses the data and the data

storage system, it is difficult or impossible to introduce new applications that provide

some services by accessing the stored user data. In addition to this, the scattering of

user data over multiple network elements and the existence of multiple reference

points to these network elements complicates user data management, user data view

and user data mining.

In order to mitigate the above-mentioned problems and more, 3GPP has introduced

the concept of User Data Convergence (UDC) [4]. In this concept the user data

storage and the application logic that accesses and uses the data are separated, see

Figure 3. User data that used to be stored in network element like HSS and HLR/AUC

6

is converged and stored in a new entity called User Data Repository (UDR). The main

building blocks of UDC are UDR, Application Front Ends and the Ud interface.

Figure 3. UDC Architecture [5]

2.2.1 UDR

“The User Data Repository (UDR) is a functional entity that acts as a single logical

repository that stores converged user data” [5]. User data like subscription data that

used to be traditionally stored scattered in different network elements like HSS, HLR

and some Application servers is logically converged and stored in the UDR.

Application Front Ends should only access the data that is required by their

application logic. To achieve this, UDR should perform authentication of Application

Front Ends and authorization of data access based on the data the FEs are trying to

access. The information model developed for the storage system should enable a

separate view of the converged user data stored for each Application Front End. This

means Application FEs will only access the part of the converged user data that

contains the data relevant to them. The information model of the UDR should also be

flexible enough to allow integration of a new Application Front End information or

modification of information model of existing Application Front End without

affecting operation of other Front Ends.

7

2.2.2 Application Front Ends

Application Front Ends are systems that only implement the application logic and

store or access their data from the UDR. They might store the data temporarily during

processing of some request but will discard it after completion of the operation. The

network elements whose data storage and application logic would be separated could

keep the application logic and become Application Front End (FE), e.g. an HSS could

store the data in UDR and become HSS Application Front End. Figure 4 shows an

example of an Application FE interaction with a UDR to get Authentication data of a

user.

Figure 4. Example of Application FE message flow with UDR

2.2.3 Ud interface

As can be seen on Figure 3, the interface between the Application Front ends and the

UDR is call the Ud interface. Using this interface Application FEs can read, write,

modify or delete data stored in the UDR. Additionally, Application FEs can subscribe

for notifications of change of data stored in the UDR. Two protocols are chosen to be

used on this interface by 3GPP [6]. One is Lightweight Directory Access Protocol

(LDAP) [7], which is used for the purpose of retrieving, adding, deleting and

modifying data stored in the UDR, see Figure 5. The other is Simple Object Access

Protocol (SOAP) [8], which is used by the Application FEs to subscribe and

unsubscribe for notification of change of data, see Figure 6 and Figure 7. UDR use it

to send notification data to Application FEs that subscribe to notification.

8

Figure 5. LDAP update data operation on Ud interface [5]

Figure 6. Subscription to Notification on Ud interface [5]

9

Figure 7. Notification Request on Ud interface [5]

2.2.4 LDAP

The Lightweight Directory Access Protocol (LDAP), which is defined in [7], is an

application protocol used by LDAP clients to interact with a Directory server (LDAP

server [9]), see Figure 8. This protocol enables an LDAP client to bind to an LDAP

server and search, add, delete, modify a directory entry stored in the server.

Figure 8. LDAP protocol stack [6]

10

LDAP servers could return a referral when the requested data is stored in another

server. Referral is an LDAP Uniform Resource Locator (URL) that contains host

name, port number and optionally a Distinguished Name (DN) on another server [10].

The client uses this information to make another query to the other server. An LDAP

server could be configured to contact the other server and return the result to the client

[11].

A directory entry is composed of attribute types, attribute values, object class and a

distinguished name, which is used to identity the entry uniquely within the Directory.

Most directory entries contain information related to an object. As an example, the

‘security-parameter’ associated with a single Evolved Packet System (EPS)

subscription can be considered as an object where the entry for this object will hold

the secret key(K) and the International Mobile Subscriber Identity(IMSI) of the EPS

subscriber.

The data model of information stored in a Directory is a hierarchical tree structure

where the vertices of the tree are the objects. Objects could have hierarchical relation.

So, entries could have hierarchical relation based on the objects the entries contain

information for. As an example, a country object can have city and language object

under it. So, entries that contain city and language information about a country are

placed under an entry that contains the country information. In Figure 9, the country

entry c=Finland is on top of the tree, and the entries cn=cities and cn=language which

contain information about the cities and languages in country Finland is placed under

it.

Figure 9. Example of hierarchical tree structured directory entries

LDAP is characterized as a write-once-read-many-times service [12]. This means

LDAP is optimized for storage of data that could be read many times but updated

rarely. The nature of most of the data, like subscription data of users to be stored in

the UDR shares this characteristic of write-once-read-many-times. In terms of

security, LDAP servers provide access control at individual object and individual

attribute level [13]. Application FEs may be required to have access rights to only

certain attributes in an entry. In terms of open interface access, LDAP is a standard

protocol that enables any LDAP standard client communicate with any LDAP server

[14]. In UDC, the UDR should be accessible to different Application FEs that are

authorized to access it to simplify creation of new services [4]. For this purpose, the

data access interface should be open and standardized.

c=Finland

cn=cities cn=language

11

As shown in Table 1, an LDAP Server has some advantages over Relational Database

in meeting the requirements of the UDC concept. It could be accessed by a standard

wire protocol, LDAP. It is possible to restrict data access at attribute level. This allows

a fine-grained access control of data accessed by Application Front Ends.

Table 1. Some comparison between LDAP Server and Relational Database

A work done in [15] investigated LDAP as a back-end technology to serve the static

portions of subscriber data for both HLR and HSS. The result of the investigation

shows the performance is good when the LDAP Directory Server stores the subscriber

data in memory cache.

2.2.5 SOAP

Simple object access protocol (SOAP) is a lightweight structured message exchange

protocol and messages are encoded in Extensible Markup Language (XML) format. A

SOAP message is an XML document containing Envelope, Header, Body and Fault

elements. SOAP relies on application protocols like Hypertext Transport Protocol

(HTTP) to exchange messages, see Figure 10. When SOAP uses HTTP to exchange

messages, the SOAP message is contained in the HTTP message body.

3GPP [6] has chosen this protocol for the exchange of Subscribe and Notify messages

between Application Front Ends and the UDR. But a work done in [16] argued that

SOAP messages are bulkier in comparison to its RESTful counterparts. In addition, it

argued that using SOAP and LDAP protocol on Ud interface is not well suited for

UDC. Instead it proposes using a single protocol called oData [17].

LDAP server Relational Database

Read optimized [12] Better for frequently updated data

Standardized local and remote data access

methods. [12]

No standardized remote data access

methods. [12]

Access control up to object and attribute

level. More fine-grained access control.

[13]

Access control up to Column level. [13]

Hierarchical data organization. Flat tables. No hierarchical data

organization.

12

 Figure 10. SOAP protocol layer [6]

2.2.6 Information model

Generally, an information model is used to show the relationship between entities in a

system. “An Information Model provides the framework for organizing your content

so that it can be delivered and reused in a variety of innovative ways.” [18].

Information modeling requires a careful analysis of the managed objects to

understand the relation between the objects and the features, or attributes, of the

objects. One common modeling language used for information modeling is Unified

Modeling Language (UML) [19]. It defines notations to be used for representation of

objects and the relation between objects. Table 2 shows some of the basic notations

defined in UML.

Table 2. Some UML Notations

Notation Meaning

Represents Composition. An object on the diamond edge has an

object on the non-diamond edge. An instance of an object, which

is placed on the non-diamond edge, can exist only when the

instance of an object placed on the diamond edge exist.

Represents Aggregation. An object on the diamond edge has an

object on the non-diamond edge. An instance of an object, which

is placed on the non-diamond edge, can exist independently.

0..1 None or one of the instance of the information object

0..* None or multiple instance of the information object

0..N None or up to N instance of the information object

1 Only one instance of the information object

An information model, as it is at conceptual level, does not concern itself with

implementation of the model. But it will be used by implementors as a guide to create

data models which are used by implementors.

13

2.2.7 Data model

A data model is defined at a lower level abstraction. It provides detailed information

that is used for implementation. Since data models depend on the environment where

the model is implemented, different data models can be constructed from a single

information model.

2.3 Internet of Things

A number of computing devices are being connected to the internet, creating the

Internet of Things (IoT). “The term IoT was initially proposed to refer to uniquely

identifiable interoperable connected objects with radio-frequency identification

(RFID) technology” [20]. But there are many definitions provided for IoT by different

standardization organizations.

A work done in [21] aimed to provide an all-inclusive definition of IoT that addresses

all the IoT’s features. To come up with such definition, they have considered

definitions provided by organizations like European Telecommunications Standards

Institute (ETSI), International Telecommunication Union (ITU), Institute of Electrical

and Electronics Engineers (IEEE) and other organizations. In their work they have

mentioned IEEE defines IoT as: “A network of items—each embedded with

sensors—which are connected to the Internet.”. While ETSI defines a similar concept

called Machine Type Communication (MTC) as: “Machine-to-Machine (M2M)

communications is the communication between two or more entities that do not

necessarily need any direct human intervention.”

IoT communication technologies have become mature and widespread. IoT

communication technologies can be categorized into short-distance and wide area

network communication technologies. For short distance communication Zigbee, Wi-

Fi, Bluetooth, Z-wave and other technologies can be used. And for wide area network

communication, among other wide area network technologies, technologies

standardized by 3GPP like Long-Term Evolution (LTE) can be used. [22]

2.3.1 3GPP on IoT

UDC is intended to solve the problem of having different repositories to store user

and service data. However, 5G networks are posing new requirements and challenges

for data repositories. 5G aims to address limitations of previous 2G, 3G and 4G

standards and be a potential key enabler for IoT [23]. The 5G networks have

requirements beyond providing connectivity to end users. 5G is targeting users and

machines with a wider set of requirements in terms of authentication, service data and

user provisioning information. The concept of Internet of Things (IoT) envisions a

connection of billions of heterogeneous devices communicating with each other and

14

other non IoT devices autonomously to provide a variety of services. Most traditional

communication is triggered or supervised by a human sitting in front of a personal

computer or using some communication device like a smartphone. Because of this,

most existing networks, networking technologies and services are designed based on

the needs and behaviors of humans.

There are a variety IoT devices with different requirements than those of current UE

like smart phones. Different IoT device types could have different operational

requirements based on the type of services they provide and the environments they

operate in. Depending on the services a device provides it could require high data rate

or low data rate connection. And depending on the environment it is operating in, it

could be required to operate with very minimum power consumption so that the

battery could last for years.

To accommodate IoT devices in 3GPP networks, 3GPP has tried to identify, see [24],

the requirements and use cases of these devices. It has analyzed the operational

aspects, connectivity aspects and resource efficiency aspects of these devices. In terms

of resource efficiency, it is required among other things; to minimize the signaling

required for configuration of these devices and transmission of user data, to optimize

battery consumption of these devices and to support efficient service discovery

mechanisms.

There are radio technology standards, namely Long-Term Evolution, Category M1

(LTE-M), Narrow Band IoT (NB-IoT) and Extended Coverage Global System for

Mobile communications (GSM) IoT (EC-GSM-IoT), that are developed by 3GPP to

meet some of these requirements [25]. Since the radio technology standards are not

enough, 3GPP has developed enhancements in the core network elements to support

transmission of small data efficiently and to support transmission of non-IP data.

These enhancements are called Control Plane (CP) Cellular IoT (CIoT) EPS

optimization, User Plane (UP) CIoT optimization, attachment without PDN and

support of non-IP data [25]. To support these enhancements, Mobility Management

Entity (MME) should have the capability to transfer small user data using signaling.

And a new network element called Service Capability Exposure Function (SCEF) is

introduced to support non-IP data transfer, see Figure 11.

15

Figure 11. CIoT optimization

2.3.2 Challenges related to IoT devices and solutions

Due to limited or lack of user interface and the substantial number of IoT devices, it

creates a challenge for owners to manage (discover, configure and monitor) their IoT

devices. This challenge has made the IoT a hot research subject for researchers and a

business’s opportunity for big and start-up companies. In this section we try to present

some of the solutions proposed and developed by researchers, organizations and

companies.

To discover and configure sensor devices autonomously a framework that utilizes the

current mobile devices is proposed in [26]. This framework is called Context-aware

Dynamic Discovery of Things (CADDOT). Before developing this framework, the

researchers have identified among other challenges the challenge of configuring

devices manually when there are many sensor devices. This framework relies on a

nearby mobile device that runs an application which can communicate with the sensor

devices. The application running on the mobile device will get the configuration data

of the sensors from the cloud. The framework is designed under the assumption the

sensor devices will try to connect to a Wi-Fi network automatically and with no

authentication.

Another approach which uses mobile devices as a hub for dynamic configuration of

sensors is proposed in [27]. In this approach the sensors communicate with an

application running on the mobile using wireless technologies like Wi-Fi and

Bluetooth. And a plug and play mechanism is used to configure the sensors.

A different approach, which uses a client server architecture for discovery of IoT

devices is being developed by XMPP Standards Foundation in one of its XEP series

16

specifications [28]. In this approach a client (an IoT device) can discover an XMPP

server using DHCP, Multicast DNS or SSDP/UPnP. Once finding an XMPP server, it

uses Extensible Messaging and Presence Protocol (XMPP) to communicate with the

server and register itself. It defines a way for the IoT device to be discovered only by

the owner of the device.

Beyond the solutions proposed on paper above as a specification and a research topic,

there are real commercial IoT management solution which are already deployed. One

of them is Amazon’s ‘AWS IoT Device Management’ system [29]. It claims to

provide services like bulk registration of IoT devices, device discovery in real-time,

remote device monitoring and remote device management including software updates.

Other commercial solutions that claim to provide similar solutions are ‘Microsoft

Azure IoT Hub’ [30].

17

3. User Data Convergence Design

This chapter describes the design of the User Data Repository. The chapter describes

the information model which is defined in 3GPP for storing User Data. Currently

3GPP has defined Baseline Information Models for EPS and IMS, which are

explained in this chapter.

3.1 UDR information model

An information model is used in the UDR to model a managed objects at a conceptual

level [31]. The information model for the UDR is based on the Common Baseline

Information Model, see Figure 12 and Figure 13, defined in 3GPP TS 32.182[32]. As

stated in 3GPP TR 22.985[4], UDR information model should start with Common

Baseline Information Model.

The Common Base line information model defines the relation between subscription

and services, services and End Users and so on as shown in Figure 12. It also defines

the relation between EPS, General Packet Radio Service (GPRS), CS and IMS

services and some of the information object classes that are related to these services,

see Figure 13.

 Figure 12. UDC Core Common Baseline Information Model [32]

18

Figure 13. UDC Identifiers Common Baseline Information Model [32]

Based on the Common Baseline Information Model, a Specialized Information Model

for EPS and IMS shall be designed. “A Specialized Information Model describes the

specific relationships between the information in a given particular case. The

Specialized Information Model takes into account the specific applications, the

functionality included and the relevant business information” [4]. An EPS Specialized

Information Model is designed for EPS data that is normally stored in EPS HSS. And

an IMS Specialized Information Model is designed for IMS data that is normally

stored in IMS HSS.

For the purpose of analyzing the proposed solution in this thesis, a Specialized

Information Model for IMS and EPS is designed to store user data. The design is

mainly based on the principle that the design shall be flexible enough to easily add a

new information model for a new application or to add new data in the existing

information model.

Base on the EPS and IMS Specialized Information Models designed, one converged

information model is created for the UDR. Since the UDR is user centric, i.e. almost

all the data stored in the UDR is about the user, ‘EndUser’ information object class is

used as a point of convergence for different Specialized Information Models as shown

in Figure 14.

19

Adding new data or new information model in the existing converged information

model for an application FE shall only affect the operation of the application FE that

the data is added for. To achieve this, each Information object class in Specialized

Information Model of an application FE is designed to hold data that is used only by

that application FE, see Figure 14. Any data that could be used commonly by different

application FEs shall have its own information object class.

Figure 14. Converged Information Model

Figure 15 shows a Specialized Information model for storing EPS service profile data.

Each service profile is identified by a service profile id which is unique in the UDR.

It contains a permanent subscription related data for an end user. It also holds

dynamic information (like which MME is currently serving the UE(s)) of the UE(s)

that use the service profile data.

20

Figure 15. Information Model for EPS Service Profile

21

3.2 UDR data model

After designing the information model for the UDR, the next step is designing a data

model that could be used to create a schema for Directory Server(s) that will store the

information. The data model used in the Directory Server for organizing data has

hierarchical structure, so a Tree-like data modeling is used.

As discussed in section 2.3.3, there can be more than one data model derived from a

single information model based on implementation requirements. For this data model,

the requirements that are taken into consideration were the number of operators,

scalability, flexibility and the kind of system that stores the data.

The data model is designed for a single operator. So, on the top of the Tree-like data

model is the operator, as shown in Figure 16. To make the system scalable, each

system (i.e. IMS and EPS) data is put in a separate tree. For example, EPS

subscription data will be stored under one tree and IMS subscription data will be

stored under another tree as depicted in Figure 17. This enables easy deployment of

EPS data in one directory server and IMS data in another directory server. To maintain

the logical convergence of data, a referral(s) shall be configured in each server. The

definition of referrals is given in Section 2.2.4.

Figure 16. Root of the Tree-like UDR Data Model

22

Figure 17. Data model for End-User data

3.3 EPS HSS FE software design

As part of this thesis, I have implemented EPS HSS Application Front-End. This EPS

HSS Application FE module is implemented in C and is divided in three modules as

shown in Figure 18. These modules are called FE Core, FE LDAP Interface and FE

S6a Interface. The implementation is divided based on the functionality that each

module should provide. Hence, a change in functionality only affects a single module.

For example, if the library used for LDAP client does not support some feature, it can

be replaced by a new library that supports the missing feature. Therefore, changing

the LDAP client only requires a modification in the ‘FE LDAP Interface’ module,

where the new LDAP client library is used.

“FE LDAP Interface” and “FE S6a Interface” modules communicate with the core

module with a well-defined interface. The interface is defined in a C header file that

contains the methods and structures used for the communication. There is one C

header file defining the interface between the ‘FE Core’ and the ‘FE LDAP Interface’

module. There is another C header file defining the interface between the ‘FE Core’

and the ‘FE S6a Interface’ module. There is no interface between the “FE LDAP

Interface” and “FE S6a Interface” module. This design allows replacing the modules

with other modules that implement the same functionality. The only requirement is

that the new module should support the interface used to communicate with other

modules as defined in those C header files.

S6a and Ud are the only standard communication interfaces defined in the EPS HSS

FE implemented. Hence, it only processes messages received from the Mobility

23

Management Entity (MME). The EPS HSS Application FE uses its “FE LDAP

Interface” module to get/update user data from a Directory Server. This data is

required during processing of messages received from the MME. This data is not

permanently stored, it is only temporarily stored in memory during processing of the

message. After the message is processed, the data is discarded. The only data that is

permanently stored in memory is the configuration data, like the MME Names and IP

addresses.

In practice this means that the EPS HSS FE Application functions are stateless, and all

the messages received are processed independently irrespective of the message sent or

received previously.

Figure 18. EPS HSS FE software architecture

3.3.1 FE Core module

This module handles the main logic of EPS HSS FE application. It processes Update

Location Request, Authentication Information Request, Cancel Location Request,

Purge UE Request and Notify Request messages received from an MME. In the

current implementation the Reset-Request, Delete Subscriber Data and Insert

Subscriber data messages are not supported.

This module receives the messages to be processed from the “FE S6a Interface”

module. The messages are passed in C structures define in a header file used to

interface the “FE Core” module and “FE S6a Interface” module. There is one C

structure defined for each message. For example, for Purge-UE Request message, a C

structure called ‘pur_msg’ is defined to hold the message, see below.

24

struct pur_msg{

 struct utf8string mme_name;

 struct utf8string imsi;

 unsigned32 pur_flags;

 struct supported_features *supported_features;

 struct eps_location_information * eps_location_information;

};

This module checks if the received request message is for a valid user. To validate the

user, the module uses “FE LDAP Interface” to get the service profile of the user from

the LDAP Server. The IMSI received in the request message is used to identify the

user. If there is no data for the given user, the processing is interrupted, and a response

message is passed to the “FE S6a Interface” module. This response follows the

standard specifications defined in 3GPP [33]. However, if the “FE LDAP Interface”

can successfully retrieve the service profile data for the user, the module continues

processing the message. There could be more than one interaction (add, delete,

update) with the Directory Server during processing of a single request message.

3.3.2 FE S6a Interface module

This module handles the communications with the MME based on S6a specifications

defined in 3GPP [33]. This module parses the S6a messages received from the MME

and checks if the received message is valid. If it is valid, it passes the message to the

‘FE Core’ module for further processing. The “FE S6a Interface” module only passes

part of the message that the ‘FE Core’ module needs for processing the message.

This module uses an open source Diameter protocol implementation called

‘freeDiameter’1. ‘freeDiameter’ handles sending and receiving of Diameter

Application messages. It also has methods used to register call back functions that are

used when a specific Diameter application message is received. But since it only

implements the basic diameter protocol, an additional S6a library is used for

processing the S6a Diameter messages. I have implemented this library, but not as

part of this thesis.

The S6a library provides methods to parse the content of the S6a interface messages

and Attribute Value Pair (AVP). The S6a library also provides methods to register

callback functions that are called when S6a messages are received. The S6a library

implements the S6a interface messages and AVP structures that are defined in 3GPP

specifications [33]. The RFC [34] on Diameter Protocol standard defines the basic

structure of APVs and Diameter commands (messages). As an example, a structure of

1 freeDiameter website: http://www.freediameter.net/

http://www.freediameter.net/

25

User-Id AVP is provided below.

/* User-Id */

{

 struct dict_avp_data data = {

 1644, /* Code For User-Id AVP*/

 10415, /* Vendor */

 "User-Id", /* Name */

 AVP_FLAG_VENDOR |AVP_FLAG_MANDATORY, /* Fixed flags */

 AVP_FLAG_VENDOR, /* Fixed flag values */

 AVP_TYPE_OCTETSTRING /* base type of data (format of

the data) */

 };

 CHECK_dict_new(DICT_AVP, &data, UTF8String_type, NULL);

};

The S6a library uses the methods defined in ‘freeDiameter’ for parsing contents and

registering callback functions. ‘freeDiameter’ checks validity of S6a messages and if

the message is not valid, it responds with the appropriate Diameter error message. The

S6a message could be invalid if the message contains AVP(s) that do not belong to the

message, or if a mandatory AVP that should be present in the message is missing.

“FE S6a Interface” module uses the methods defined in the S6a library for parsing

contents of messages and registering call back functions. The callback functions are

defined in this module. When a valid S6a message is received, the callback function

that is registered for the message is called. And the message is passed to the callback

function as an argument into the callback function’s parameter.

For example, ‘ss_reg_cb_ulr’ method defined in S6a method registers a callback

function called ‘fe_s6a_ulr_cp’ for handling the Update Location Request

message. When an Update Location Request message is received, the message is

passed to ‘fe_s6a_ulr_cb’ function as argument to the function’s parameter

called ‘msg’, as shown below.

ss_reg_cb_ulr(fe_s6a_ulr_cb); /*Register fe_s6a_cb_ulr*/

int fe_s6a_ulr_cb(struct msg ** msg, struct avp * av, struct

 session * sess, void * opaq, enum disp_action * act);

The callback function ‘fe_s6a_ulr_cb’ defined in the “FE S6a Interface” module

parses the content of the message using methods defined in the S6a library. Then it

copies the content in to a structure called ‘struct ulr_msg’. Then it passes the

structure to a function called ‘fe_ulr’ which is defined in ‘FE Core’ module. The

‘fe_ulr’ function processes the Update Location Request messages. After

26

processing the Update Location Request message, it copies the content of the Update

Location Answer message in the structure called ‘struct ulr_response’. Then

it returns this structure to ‘fe_s6a_ulr_cb’ method. The ‘fe_s6a_ulr_cb’

method uses the data stored in this structure to fill the Update Location Answer

message and then send Update Location Answer message to the MME.

struct ulr_msg{

 struct utf8string mme_name;

 struct utf8string * imsi;

 struct supported_features * supported_features;

 struct terminal_info terminal_info;

 enum rat_type rat_type;

 unsigned32 ulr_flg;

 enum ue_srvcc_capability ue_srvcc_capability;

 struct octetstring * visited_plmn_id;

 struct octetstring * sgsn_number;

 enum homogeneous_support_of_ims_voice_over_ps_sessions *

 homogeneous_ims_vop;

 struct address * gmlc_address;

 struct active_apn * active_apn;

 struct equivalent_plmn_list * equivalent_plmn_list;

 struct octetstring * mme_number_mtsmsm;

 enum sms_register_request sms_register_request;

 struct diameterid * coupled_node_diameter_id;

};

struct ulr_response * fe_ulr(struct ulr_msg msg);

struct ulr_response{

 struct supported_features * supported_features;

 unsigned32 ula_flags;

 struct subscription_data * subscription_data;

 struct reset_id * reset_id;

 enum error_diagn *error_diagnostic;

 S6A_RESULT *result; /*DIAMETER_SUCCESS,

DIAMETER_ERROR_USER_UNKNOWN …*/

};

3.3.3 FE LDAP Interface module

This module handles the Ud interface with an LDAP Server. The ‘FE LDAP Interface’

module interacts with the ‘FE Core’ module to fetch, delete and update user data

stored in a Directory Server (DS). The ‘FE LDAP Interface’ module and the ‘FE Core’

27

module are aware of the schema of the data stored in the DS.

This module acts as an LDAP client to access the data stored in an LDAP server.

There are opensource LDAP client libraries implemented in C language, such as

OpenLDAP’s2 and NetIQ3. NetIQ client library is based on OpenLDAP and has the

most recent updates from 2016 [35]. But OpenLDAP client library is recent, so it is

chosen to be used in the implementation of the LDAP client in ‘FE LDAP Interface’

module.

OpenLDAP client library provides a lot of methods that could be used to interact with

an LDAP Server. But the ‘FE LDAP Interface’ module only uses

‘ldap_initialize’, ‘ldap_search_ext_s’, ‘ldap_modify_s’,

‘ldap_add_s’ and ‘ldap_delete_s’ methods. It uses these methods to establish

connection with DS and then to add, delete, update and retrieve user data.

As an example, when a method defined in ‘FE Core’ module wants to get Access

Point Name (APN) data of a user, it calls the method

‘fe_ldap_fetch_apn_config_profile’, see below.

struct entry * fe_ldap_fetch_apn_config_profile(char

 *service_profile_distinguished_name);

When it calls this function, it passes the search-base4 as an argument in the function’s

parameter ‘service_profile_distinguished_name’.

‘fe_ldap_fetch_apn_config_profile’ is defined in ‘FE S6a Interface’

module. This method uses ‘ldap_search_ext_s’ method to search the APN data from

the LDAP Server where the APN data for the user is stored. If the LDAP Sever

returns the requested APN data, the module copies the data into a structure called

‘struct entry’. And it returns the structure to the method that has called this method. If

there is no APN data, it returns NULL. ‘struct entry’ is defined in a C header file that

is used to interface ‘FE S6a Interface’ module with ‘FE Core’ module. Its definition is

given below.

struct entry{

 char *dn; /*Distinguished Name of the entry*/

 struct attr_val_pair *attr_val_pairs; /* Attribute types

 and corresponding values*/

 struct entry *next;

};

2 http://www.openldap.org/

3 https://www.novell.com/developer/ndk/ldap_libraries_for_c.html

4 A Search base is the place where a search for a data stored in a directory server starts. It is the

distinguished name of the entry within which or under which the data can be found.

http://www.openldap.org/
https://www.novell.com/developer/ndk/ldap_libraries_for_c.html

28

3.4 SOAP Subscription/Notification design

One of the functionalities expected from the UDR is a subscription and notification

functionality. These functionalities are used to receive data when changes occur in the

data stored in the UDR. After checking available Open Source implementations of

Directory Servers, none was found with a support for Subscription/Notification using

SOAP protocol. Thus, I have implemented a new plug-in software module that

handles the Subscribe/Notify functionalities.

To implement Subscription/Notification functionality using SOAP, the Directory

Server chosen shall provide a means to include a new functionality. 389 Directory

Server5 and openLDAP Directory Server both provide Application Programing

Interface (API). Both DS’s API is in C language. And these APIs can be used to

integrate Subscription/Notification functionality in the Directory Servers. The 389 DS

is chosen to be used because it has a better documentation [36] on how to use the

APIs.

The documentation of Red Hat Directory Server can be used for 389 Directory

Server.6 It is possible to integrate a new program into the Directory Server as a plug-

in. There are mainly two Plug-in types in 389 DS, namely Pre-Operation and Post-

Operation Plug-in [37]. Pre-Operation Plug-in is called to process a request before the

backend database is accessed. And Post-Operation Plug-in is called after backend

database activities (i.e. adding/deleting/modifying data in the backend database).

There is also a Plug-in type that is called when the Directory Server is starting. The

Subscribe/Notify Plug-in software module implemented submodules that get

registered as Post-Operation Plug-in type and a Plugin-in type that is called when the

DS starts.

In this implementation, SOAP uses HTTP to transport the SOAP messages. So, I have

implemented an HTTP server as a submodule to be integrated into the Directory

server. This submodule is registered as a Plug-in type that is called when the DS

starts. This submodule will accept SOAP Subscribe/Unsubscribe messages sent by an

Application Front End. It passes this messages to methods that can process them. The

submodule uses ‘GNU Libmicrohttpd'7 library to implement the HTTP server.

The Subscribe/Notify module also handles the SOAP Notify Request message. This

message is sent when there is a subscription for notification when there is a change on

data stored in the UDR. If the change (add/modify/delete) made on the data meets the

notification conditions, a Notify Request message is sent to the Application FE which

subscribed for the notification. To implement this functionality, there are two options.

5 http://directory.fedoraproject.org/

6 http://directory.fedoraproject.org/docs/389ds/documentation.html

7 https://www.gnu.org/software/libmicrohttpd/

http://directory.fedoraproject.org/
https://www.gnu.org/software/libmicrohttpd/

29

One is to implement a submodule as Pre-Operation Plug-in type and the other is to

implement a submodule as Post-Operation Plug-in type. If the submodule is

implemented as a Pre-Operation Plug-in, Notify Request message will be sent before

data is added, deleted, modified in the backend database. That means if the LDAP

operation fails on the backend database, the Notify Request message sent will

contains incorrect information. So, we chose to implement it as a Post-Operation

Plug-in. This way it is possible to know if the LDAP operation is successfully

performed on the backend database.

How a SOAP Subscribe request message is handled is shown in Figure 19. When an

Application FE ‘FE-2’ wants to subscribe for notification on change made on some

data, it sends a SOAP Subscribe Request message. The HTTP server running in the

Subscribe/Notify Plug-in will receive the message and pass it to the method that

handles it. This method after it processes the Subscribe message, stores the subscribe

information in the backend database.

Figure 19. SOAP Subscribe request

The process of sending a SOAP Notify message is shown in Figure 20. Let’s assume

‘FE-2’ has already subscribed to get a notification on change made on some data. And

‘FE-1’ is requesting an LDAP operation (Add/Delete/Modify) on this data. The

Directory Server’s own Pre-Operation Plug-in will process the request. Then it

performs the LDAP operation on the backend database. The result of the operation is

then processed by the Post-Operation Plug-in. Since the submodule that handles

notification is registered as a Post-Operation Plug-in type, the result of the operation,

along the data, is passed to it. If the result of the operation is successful, the

submodule checks if the change made on the data meets the notification conditions.

To check this, it gets the subscription information stored in the backend database.

Since ‘FE-2’ has already subscribed for notification on a change on this data, the

30

submodule sends a SOAP Notify Request to ‘FE-2’.

Figure 20. SOAP Notify Request

3.5 Summary of opensource libraries used

Table 3 summarized the open source libraries used in the implementation of EPS HSS

FE Application and Subscribe/Notify Plugin software.

Table 3. Summary of opensource libraries used

Name Description

freeDiameter Diameter protocol implementation library. API provided

by this library is used to send and receive messages on

the S6a interface

openLdap Client Library LDAP client implementation. API provided by this

library is used to connect to an LDAP server and then

fetch and update user data.

GNU Libmicrohttpd Provides API to implement HTTP server as part of

another application. API provided by this library is used

build an HTTP server that listens for incoming

Subscription Requests.

31

4. Extended Information Model

This Chapter describes how the information model explained in Chapter 3 is extended

to hold IoT device data. We propose extending the initial 3GPP design of UDC for

future mobile network to manage IoT devices besides traditional HSS and IMS

subscriptions. This chapter explains in detail how the extended information model

enables bulk subscription and management of IoT devices. In order to validate this

extension a testbed is deployed, and performance results are presented in the next

chapter.

4.1 UDR information model for IoT device data

This section describes the extensions made on the information model to manage IoT

devices. Before modifying the current information model, the additional information

required for storing IoT devices was identified. 3GPP [38] has identified some

features required for Machine Type Communication (MTC).

The parameters identified by 3GPP [38] are Low Mobility, Time Controlled, Small

Data Transmissions, Infrequent Mobile Terminated, MTC Monitoring, Secure

Connection and Grouped Based MTC Features. These features can be considered as

permanent IoT device data as they do not change frequently. Therefore, this static data

can be stored as a service profile data for IoT devices in the UDR.

After identifying the IoT device specific data, the current information model was

extended to hold the IoT specific data. The extended information model is proposed

to allow bulk subscription of IoT devices and facilitate management of these devices.

Even though IoT devices could use both EPS and IMS services. We consider that IoT

devices are using EPS services, so the extended information model assumes that each

IoT device will have an IMSI number.

4.1.1 Extension for bulk subscription

To achieve bulk subscription of many IoT devices, a new information model is

designed to allow sharing of one EPS Service Profile information object among

multiple IMSI information objects. The information contained in one IMSI

information object uniquely identifies one IoT device. During bulk subscription of

IoT devices which use the same EPS service, a new EPS Service Profile information

object is created to hold the information about the EPS services. IMSI information

objects are created for each IoT device, and each IMSI information object will hold an

information that points to the EPS Service Profile information object, see Figure 21.

In case of having 100 IoT devices where each IoT device has a unique IMSI number,

32

there will be 100 IMSI information objects. Therefore, if these 100 IoT devices use

the same EPS service, one EPS Service Profile information object will be created for

each of them. These 100 IMSI information objects will hold an information element

that points to this EPS Service Profile information object.

Figure 21. Object diagram for bulk subscription

 The proposed bulk subscription solution is intended for bulk subscription of IoT

devices owned by a single user. However, this solution cannot be used for bulk

subscription of devices owned by different users in case one of the users wants to

modify the EPS service. The fact that the IoT devices are associated to the EPS

service, any change on each subscriber’ EPS service will require the modification of

the EPS Service Profile information object. Thus, since this EPS Service Profile

information object is shared by other users, modifying it could affect the EPS service

used by IoT devices of these users.

Figure 22 shows how the current EPS information model, shown in Figure 15, is

extended to hold IoT device specific data. The ‘MTCServiceProfile’ class is added

into the information model.

33

Figure 22. Information Model for EPS Service Profile including IoT devices data

34

The instances of this MTC Service Profile information class will hold IoT device

specific EPS service data for a group of IoT devices. The grouping of IoT devices is

based on the combination of IoT device specific EPS services that they commonly

utilize. For example, in a set of IoT devices owned by a user, let’s assume only a

certain group of IoT devices use Small Data and Low Mobility services. An MTC

Service Profile object, that holds Small Data and Low Mobility services, will be

created for this group.

There could be more than one MTC Service Profile object under one EPS Service

Profile information object. This is due to the fact that one user could have more than

one group of IoT devices. Each MTC Service Profile object will be identified

uniquely using a Device Group Id. This Id is unique within one EPS Service Profile

information object. The IMSI object of each IoT device will hold the Device Group Id

of the group the IoT device belongs to.

4.1.2 Network supported management of IoT devices

For the network to support management of IoT devices, it is necessary to identify the

kind of data that is helpful for this purpose. Management of IoT devices in this

context means automatic configuration and software update of these devices. The

data identified as necessary are device id, IP address of the device, device server id, IP

address of a device server, device location, status of device, software version of

device and type of device.

Considering how the management process is performed was a key factor in

identifying the necessary data. Two scenarios were considered, one is when the

management process is initiated by the IoT device and the other is when it is initiated

by some management server. When an IoT device initiates the process, it needs to

know the IP address of the server that manages it. When the management server

initiates the process, it could require device id, device IP address, device status, device

type, device location and software version of device.

When an IoT device initiates the management processes, the proposed solution

requires the presence of a device server. A device server in this context is any server

whose IP address should be configured in the IoT device over the air. The device

server could be a management server or a server that holds information about the

management server. In addition to device management, the device server could also

be used for storage of data collected by the IoT devices. The device server is

identified by a device server id which is unique for a single user. The device server id

will be set as a part of EPS service profile in the MTC service profile object. So IoT

devices that belong to the same group will have the same device server as they share

the same MTC service profile object. But as the same server id could be set in

multiple MTC service profile objects, IoT devices that belong to different groups

35

could have the same device server. And if a user changes a device server, there is no

need to change the device server id. Changing the IP address associated to the device

server id is sufficient. As such the device server id is a permanent user data.

When the management server initiates the management process, the server needs a

way to get IoT device information like IP address of the device from the UDR. This

can be achieved through an Application Server FE or by a direct communication

between the management server and the UDR. An Application Server FE can

subscribe for the notification of these data on behalf of the management server. Or it

can directly retrieve the data from the UDR when requested by the management

server. For this to work, an Application Server FE shall be present in the network.

This thesis does not explore the details about how this Application Server FE and the

management server communicate. But the Application Server FE can communicate

with the UDR using Ud interface as discussed in Chapter 2.

If the IP address of the IoT device is to be stored in the UDR, the management server

shall be able to communicate with the device using this IP address. If IP address is not

stored in the UDR, the management server can get the IP address of the device

through other means like Domain Name server (DNS). As the IP address can vary, the

management server does not use this IP to identify the device. It uses the device id or

IMSI of the device for identification.

If the device id is stored in the UDR, the management server can use it to uniquely

identify a single IoT device. This id shall be unique at least across the IoT devices

managed by the management server. The EPS network shall get this id from the IoT

device. The EPS network will not use this id for identification of the device, it only

stores it in the UDR. If the device id is not stored in UDR, the management server

identifies IoT devices using the IMSIs’ of the devices. But this approach is laborious

and inflexible. It will require configuration in the management server to map IoT

devices with the Universal Subscriber Identity Module (USIM), which stores the

IMSI, they are using. And Each USIM shall be inserted carefully to each IoT device

as per the configuration. And in situation where a software Subscriber Identity

Module (SIM) is used, the software SIM should be configured on each device

carefully.

The configuration data of the IoT devices could be different for different type of IoT

devices. The type of an IoT device can be determined based on the functionality the

IoT device provides. A temperature sensor IoT device could have a type called

‘temperature sensor’. Temperature sensor IoT devices and humidity sensor IoT

devices owned by a single user may send the collected data to different servers and/or

at different intervals. So, the configuration data will be different for these two types of

IoT devices. The management server uses the device type information to determine

which configuration data to send to the IoT device.

36

The configuration data could also vary depending on the location of the IoT device.

As an example, the configuration data used for the IoT device could contain an IP

address of the nearest (or appropriate) data collection server based on the location of

the IoT device. Or the configuration data used could enable the IoT device display

information in a certain language based on location. So, the management server could

use the location information for such purposes.

The software version stored in the UDR can be used in two ways. In one case the

management server can use the software version stored by an IoT device to determine

whether to update the software of the device. In another case the management server

can store in the UDR the latest software version the IoT device shall use. And the IoT

device can check the software version it is currently using with the one that is stored

in the UDR. If the current software version is old, the IoT device could initiates a

software update procedure.

Finally, it should be noted that the proposed solution in this section is to help existing

IoT device management systems, like the ones mentioned in section 2.3.2, in

discovering and monitoring IoT devices. The proposed solution is not an IoT

management system.

4.1.3 IoT device specific data information model

There is some difference between the identified data mentioned in the previous

section and the data normally stored in the EPS service profile class. One difference is

that the identified data is not relevant in determining the EPS services provided to the

device. The other difference is that some of the identified data like IP address and

Location could change more frequently. So, a separate Information class is defined to

hold the identified data, see Figure 23.

Those IoT device specific data mentioned in section 4.1.1 affect the EPS service

provided to the device. So, these data are stored in an Information class under EPS

service profile information class, see Figure 23.

37

Figure 23. Information Model for IoT device specific data

4.2 UDR data model for IoT device data

The data model discussed in section 3.2 is extended based on the extended

information model for IoT device specific data.

4.3 Limitations of the model

The information model is based on the UDC concept and it could be implemented in a

UDR. As discussed in Chapter 2, the UDR has a standardized interface that enables

access to the data in it. But the usefulness of the information model implemented in a

UDR depends on the requirements which are not standardized. The model could only

be useful in a customized EPS network that enables IoT devices to store and retrieve

IoT device specific data.

38

5. Performance Results

This chapter provides an analysis of the performance of current UDC when used for

managing end user UE and other devices (e.g. sensors/actuators) connected to mobile

networks. This section will describe the setup to perform the performance testing and

identify limitations with the current design of UDC.

5.1 UDC testbed

In this chapter we set up a testbed to measure the performance of the UDC extensions

for IoT devices. The test bed is set up as shown in Figure 24 and consists of one

laptop and three servers interconnected through a switch. The prototype UDR and the

EPS HSS FE are running in the same laptop depicted in the upper part of Figure 24. In

order to emulate the IoT device subscription two MME emulators are running in two

different servers depicted in the lower part of Figure 24.

Figure 24. Testbed setup

The UDR and the EPS HSS FE are running on a ‘Lenovo Legion Y520’ laptop

computer, which uses Centos 7 operating system. The reason for using Centos 7 is

because it is the default operating system recommended to set up 389 DS that the

UDR uses to store data.

In order to measure large setup of device subscription without real IoT devices, a test

software which emulates an MME is developed. This emulator only generates and

sends S6a commands to the EPS HSS FE which consist of the device subscription or

attach. It does not provide any other functionality like processing other requests from

39

an eNodeB. The two MME emulators, ‘MME-1’ and ‘MME-2’, are deployed on two

separate servers as shown in Figure 24 running Ubuntu 16.04 operating system.

The two ubuntu machines and the centos machine are connected using a network

Switch. Each machine connects to the Hub using one physical Ethernet interface. The

interfaces that the machines used to connect to the hub are configured to be in the

same subnetwork.

5.2 Customizations required on standard EPS network

As mentioned in section 4.3, the model that supports IoT devices requires a

customized EPS network. One of the customization required is on the S6a interface

where 3GPP has no standardized commands and AVPs necessary to carry the IoT

device specific data. The S6a has been extended to include the proposed information

model for IoT devices. The current S6a commands i.e. are sufficient but the AVPs

have to be extended to include the new information model in these commands. The

AVP extensions for including the IoT device specific data are defined in section 5.2.1.

3GPP defines vendor id that is used in the prototype together with new AVP codes we

define for IoT information model which are not standardized yet. The prototype will

use experimental codes that 3GPP [39] has reserved for future use. 3GPP has defined

the codes and AVP in [34] and [33].

5.2.1. AVPs extensions for IoT

Device-Data: This AVP is type Grouped. It holds IoT device data that are used for

the management of IoT devices. Its AVP code is 1800

Device-Data ::= <AVP header: 1800 10415>

 [Device-Id]

 [Device-IPV4-Address]

 [Device-IPV6-Address]

 [Device-Type]

 [Device-Software-Version]

 [Device-Location]

 *[Device-Status]

 *[AVP]

Device-IPV4-Address: This AVP is type Address. It holds the IPv4 address of the

IoT device assigned by the EPS network. Its AVP code is 1801

Device-IPV6-Address: This AVP is type Address. It holds the IPv6 address of the

IoT device assigned by the EPS network. Its AVP code is 1802

40

Device-Type: This AVP is type UTF8String. It holds the device type value of the IoT

device. Its AVP code is 1803

Device-Software-Version: This AVP is type UTF8String. It holds the software

version the IoT device. Its AVP code is 1804

Device-Location: This AVP is type UTF8String. It holds the last known location of

the IoT device. Its AVP code is 1805

Device-Status: This AVP is type UTF8String. It holds the status of the IoT device.

The value in this AVP depends on the MTC-Monitor service the IoT device uses. If

for example the IoT device uses MTC-Monitory service ‘Loss Of Connectivity’, the

value in this AVP will be ‘CONNECTIVITY_LOST’ when connectivity with the IoT

device is lost. Its AVP code is 1806

MTC-Subscription-Data: This AVP is type Grouped. It holds IoT device specific

subscription data. Its AVP code is 1807

 MTC-Subscription-Data ::= <AVP header: 1807 10415>

 [Server-IPV4-Address]

 [Server-IPV6-Address]

 [Low-Mobility]

 [Time-Controlled]

 [Small-Data]

 [Infrequent-MT]

 *[MTC-Monitor]

 [Secure-Connection]

 *[AVP]

Server-IPV4-Address: This AVP is type Address. It holds the IPv4 address of the

device server. Its AVP code is 1808

Server-IPV6-Address: This AVP is type Address. It holds the IPv6 address of the

device server. Its AVP code is 1809

Low-Mobility: This AVP is type Enumerated. It is present when the IoT device has a

subscription for Low Mobility. Its AVP code is 1810

Time-Controlled: This AVP is type Unsigned32. It holds a configuration identifier

number. The configuration identified by this number holds the time control

information of the IoT device. This identifier number shall be unique within a home

network. Its AVP code is 1811

Small-Data: This AVP is type Enumerated. It is present when the IoT device has a

subscription for small data. Its AVP code is 1812

41

Infrequent-MT: This AVP is type Enumerated. It is present when the IoT device has

a subscription for Infrequent mobile terminated. Its AVP code is 1813

MTC-Monitor: This AVP is type Enumerated. It holds the type of MTC-Monitor

service the IoT device has subscribed to. Its AVP code is 1814

Secure-Connection: This AVP is type Enumerated. It is present when the IoT device

has a subscription for secure connection. Its AVP code is 1815

Device-Id: This AVP is type UTF8String. It holds id of the IoT device. Its AVP code

is 1816

5.2.2. Modified existing S6a commands and AVPs

Notify Request Command: This command is modified to additionally hold ‘Device-

data’.

< Notify-Request> ::= < Diameter Header: 323, REQ, PXY, 6777251 >

 [Device-Data]

Subscription-Data AVP: This AVP is modified to additionally hold ‘MTC-

Subscription-Data’.

Subscription-Data ::= <AVP header: 1400 10415>

 [MTC-Subscription-Data] 1807

5.3 Performance test setup

The testing scenario is depicted in the Figure 25 where we emulate the sequence flow

used when deploying NB-IoT by mobile operator. Firstly, the mobile operator will

register the IMSI of the NB-IoT devices in the HSS which is now part of the UDC as

represented with transaction 1 in Figure 25. When the NB-IoT is deployed in the field

and register or attach to the network for the first time as represented in transaction 2.

In this first attach request, the MME has to request all the information from the UDC

as show in transaction 3. After this first attach the device information is stored locally

in the MME database for subsequence authentication/authorization requests. After the

initial attach the NB-IoT sensor is available for accessing data from the sensor

operator, which can subscribe to events associated to the sensor with transaction 4 or

receive the data from the sensor represented with transaction 5.

42

Figure 25. Testbed flow diagram

In this performance test two types of devices are considered to show the effect of the

information model added to UDC that supports IoT devices. The first type of devices

are normal UE that use existing 3GPP defined AVPs for traditional user subscription.

There is different EPS Service Profile entry in the DS for each UE that registers to the

network.

For the second type of devices the MME will emulate S6a commands coming from

NB-IoT including the newly defined AVPs for sensor subscriptions.

In addition to the difference in AVPs we assume that all the IoT devices had bulk

subscription for the same EPS service. Thus, the EPS Service Profile data fetched

form the DS during processing of each S6a command for each IoT device is the same

EPS Service Profile entry.

The performance test will measure the delay in accessing device information during

the attach process represented with transaction 3 in Figure 25. This transaction

consists of S6a command named Update Location Request (ULR) that MME sends to

the HSS Application FE when a new device registers or attaches to the network. This

43

command is chosen because the AVP in the message is modified to support IoT

devices compared to the command used by normal subscriber’s UE. Moreover, the

ULR is delay sensitive since the UE should receive an attach response within

15seconds according to the timer T3410 defined in 3GPP specifications [40]. The

transport protocol used on the S6a interface is Stream Control Transmission Protocol

(SCTP) [41].

Table 4. The performance test includes the following test cases with different number

of NB-IoT devices and traditional UE.

Test

Case

Traditional

UE pre-

registered

in UDR (1)

NB-IoT

devices pre-

registered in

UDR (2)

Total ULR

commands

sent to

UDR (3)

ULR

commands/sec

per MME for

Traditional UE

(4)

ULR

commands/sec

per MME for

NB-IoT dev. (4)

#1 1000 1000 10000 50 0

#2 1000 1000 10000 0 50

#3 2000 2000 10000 50 0

#4 2000 2000 10000 0 50

#5 5000 5000 10000 50 0

#6 5000 5000 10000 0 50

#7 1000 1000 10000 500 0

#8 1000 1000 10000 0 500

(1) Each traditional UE is registered in UDR with own separate EPS service profile.

(2) Each NB-IoT device is registered in UDR sharing the same EPS service profile.

(3) The ULR commands sent to the UDR are split between the two MME emulators.

(4) Each MME emulator sends N ULR commands/ second which is equivalent to

have N devices attach/second.

For IoT devices, 24 entries (i.e. EPS service profile entries) that are shared by all IoT

devices are inserted in directory server database. Additionally, one entry (i.e. IMSI

information entry) is inserted for each IoT device. Whereas for traditional users, a

total of 24 entries are inserted in to directory server database for each traditional user.

Additionally, one entry (i.e. IMSI information entry) is inserted for each traditional

user.

5.3.1 Performance test results

In the performance the transmission delay and the propagation delay are insignificant.

This is because the distance between the machines is less than 1m and the link

capacity interconnecting them is 1Gbs which is very high compared to the Update

Location Request/Answer command packet sizes.

44

The delay is analyzed for the three test cases described in section 5.3. For analyzing

the delay, ULR and Update Location Answer (ULA) command packets are captured

using tcpdump [42] on the machines running the HSS FE and the 389 DS. Then the

captured packets were analyzed using network protocol analyzer tool Wireshark [43].

Table 5. ULR processing delay test result for test scenarios #1 and #2

TEST CASE Delay of 90% of

commands is less

than (ms)

Minimum

delay(ms)

Maximum

Delay(ms)

Average

Delay(ms)

1 10 1 590 10

2 10 1 585 11

Table 6. ULR processing delay test result for test scenarios #3 and #4

TEST CASE Delay of 90% of

commands is less

than (ms)

Minimum

delay(ms)

Maximum

Delay(ms)

Average

Delay(ms)

3 12 1 504 11

4 16 1 310 11

Table 7. ULR processing delay test result for test scenarios #5 and #6

TEST CASE Delay of 90% of

commands is less

than (ms)

Minimum

delay(ms)

Maximum

Delay(ms)

Average

Delay(ms)

#5 13 1 427 11

#6 2215266 959 2436008 1285809

Table 8. ULR processing delay test result for test scenarios #7 and #8

TEST CASE Minimum

delay(ms)

Maximum

Delay(ms)

Average

Delay(ms)

#7 4 8469 3959

#8 4 13243 6189

The information in the above tables only gives some key performance measurement

parameters. To have a greater visualization of the ULR processing delay, the tool R

[44] is used to plot the distribution of the delay and the trend of the delay based on the

amount of ULR commands received.

Figure 26 shows the distribution of ULR command processing delay for Test Cases #1

to #6. It helps to understand the range of the delay when processing most of the ULR

commands.

45

Figure 26. ULR command processing Delay distribution for Test Case #1 - #6

46

Figure 27 shows how the ULR command processing delay is affected as more and

more ULR commands arrive for Test Cases #1 to #6. This helps in understanding the

trend in ULR processing delay of the system overtime under similar load conditions.

Figure 27. ULR command processing delay for Test Case #1 to #6

47

5.3.2 Analysis

The results show the difference in delay when processing ULR command for IoT and

traditional users. The results in Table 5,6 and 7 indicate the increase in number of

entries in the LDAP server affects the processing delay for IoT devices more severely

than for traditional users. The other difference observed, see Figure 26, is that the

delay for IoT is more equally distributed than the delay for traditional devices.

In Figure 27, very interesting results are observed for Test scenario 6 where the

processing delay for IoT device subscription increases proportionally to the amount of

ULR commands received. This test case shows that the prototype UDR has severe

limitations for managing IoT devices where there is a high amount of subscriptions

(i.e. 5000 traditional users and 5000 IoT devices). Whereas as can be observed in the

same figure, the delay is more or less the same for Test cases 1,2,3,4 and 5 as more

and more ULR commands are received. This shows when the system is stable under

load, so it can be used for both traditional and IoT users.

The results presented in Table 8 show the prototype system performs badly under a

higher load condition. The results show the system performs badly and it can affect

the attach request timer requirement mentioned in section 5.3.

After observing the delay in the different test cases, the next step was determining the

main cause of the delay difference between IoT and traditional users. To do this,

further analysis was done on the LDAP search and modify request and response

messages. The HSS Application FE sends multiple LDAP requests towards the LDAP

server during a processing of a single ULR command. So, analyzing the delay on

processing these messages was important.

For this analysis packets were captured on the loopback interface of the machine

where the HSS FE and the 389 DS are running on. These packets were captured while

performing the tests mentioned in the previous section. Then the captured packets

were analyzed using network protocol analyzer tool Wireshark. The result of the

analysis shows the main cause of the delay was the delay caused by 389 DS to

processes LDAP requests. As a sample, the LDAP delay for Test case #5 and Test case

#6 is presented in table 9 and 10 respectively.

As can be seen from the tables there are some 8000 more search requests in Test case

#6. The reason for this is because in Test case #6, which is for IoT devices, the HSS

FE tries to fetch device service profile. There is no device service profile for

traditional UE. On top of the additional Search requests the average delay for a Search

request in case of Test case #6 is almost 100 times more than that is in Test case #5.

48

Table 9. LDAP request processing delay for test scenario #5

LDAP Request

Type

Number of

Requests

Minimum

delay(ms)

Maximum

Delay(ms)

Average

Delay(ms)

Modify 19937 0.253 255.021 0.469

Search 419225 0.050 420.963 0.278

Table 10. LDAP request processing delay for test scenario #6

LDAP Request

Type

Number of

Requests

Minimum

delay(ms)

Maximum

Delay(ms)

Average

Delay(ms)

Modify 19962 0.283 92.830 0.558

Search 443275 0.044 2216.631 28.999

In Figure 27, it is observed that the jitter for Test Cases #1 to #5 very high at some

points. To find the source of this jitter pattern, LDAP modify request delays for Test

Case #1 and Test Case #2 were analyzed. The result shows modify requests delay

exhibits a similar jitter pattern as the ULR delay in Test Case #1 and Test Case #2, see

Figure 27 and Figure 28. This shows the jitter could be caused by the LDAP server.

Figure 28. LDAP modify request and ULR jitter comparison for Test Case #1

49

Figure 29. LDAP modify request and ULR jitter comparison for Test Case #2

After this finding, a further analysis was done on the overall system by using a linux

system monitoring tool vmstat8. The tool vmstat was used to gather current system

information in two cases. In the first case neither the LDAP server nor the EPS HSS

FE were running. In the second case both the LDAP server and the EPS HSS FE were

running, and Test Case #1 was performed. The first case was done to differentiate the

effect, on the system information, of running Test Case #1. The result of the analysis

shows the block sent to a block device increased significantly every time those high

jitters occur. This shows the LDAP server is writing significantly more data into the

8 https://linux.die.net/man/8/vmstat

50

disk. And generally, writing to or reading data from disk degrades LDAP server

performance [45]. This indicates those jitters could be caused by the LDAP server.

Another thing observed was that the delay increased when the number of entries in the

389 DS is increased. Also, it increased when the frequency of the ULR command

received is increased. This delay can be explained by an LDAP performance analysis

done in [45]. It shows how the number of entries in an LDAP server and the

frequency of LDAP request affect an LDAP server performance. It shows an increase

in the number of entries and/or frequency of LDAP requests negatively affects the

performance. This can explain why there is an increase in delay observed as the

number of entries increase and as the ULR command sent increases from 5 per second

to 50 per second.

5.4 Conclusion

The result of the test on the prototype shows the difference in delay for IoT devices in

comparison to traditional users increases as the number of IoT device which share the

same EPS service profile increases. The result shows the way the LDAP server

operates becomes a bottleneck on the system. This could be improved by deploying

the LDAP server on high performance system as indicated in [45]. And also, by

optimizing the prototype HSS Application FE code for higher performance.

Overall, the result shows the feasibility of designing a user data storage system for

future mobile networks that besides managing the traditional HSS data takes into

consideration the needs of IoT devices. The prototype used for testing can manage at

least 2000 traditional users and 2000 IoT devices.

51

6. Conclusions and Future Work

6.1 Summary

The main goal of the thesis, which is designing a user data storage system taking into

account IoT devices, is achieved. The designed storage system allows bulk

subscription of IoT devices and additionally facilitates management of IoT devices.

As there is no existing standard EPS system that can utilize the designed system, an

EPS HSS Application is developed to test the system.

To test the design a prototype was developed using an LDAP server called 389

Directory Server to implement the user data storage. EPS service profile was defined

for traditional and IoT devices. These entries were inserted in the LDAP server and

the system was tested by sending ULR commands to the EPS HSS Application. The

ULR commands are sent to the LDAP server by the EPS HSS Application. The delay

between the ULR commands received by the Application and the corresponding ULA

message sent by the EPS HSS Application is measured. This delay is analyzed to test

the performance of the prototype system.

The result of the test shows the feasibility of the design. One issue observed during

the test is that the LDAP server becomes the bottleneck on the performance of the

designed system. It is advised that the LDAP server is properly optimized and there is

sufficient processing power and memory for the server to work optimally.

6.2 Future works

In the proposed design some IoT device data like IP address, Location and device type

can be stored in the user data storage. The EPS network can facilitate a secure

automatic discovery of IoT devices that belong to the same user by providing these

data to the devices based on their subscription. The feasibility and effect of this

service can be studied further.

There could be many IoT device management servers. These servers need to subscribe

for notification to get IoT device data stored in the UDR. As these servers are only

allowed to get certain device data of certain IoT devices, there should be a system that

manages the access rights of these servers. For this purpose, an Application Front End

can be developed. The access right can be managed by this application and the

application can subscribe to notification on behalf of the management servers based

on their access right. This application can be placed in the operator network. The

feasibility and details of such an application can be studied further.

52

Reference

[1] O. Teyeb, G. Wikström, M. Stattin, T. Cheng, S. Faxér, and H. Do, “Evolving

LTE to fit the 5G future,” Ericson Technology Review, Jan. 31, 2017. [Online].

Available: https://www.ericsson.com/en/publications/ericsson-technology-

review/archive/2017/evolving-lte-to-fit-the-5g-future. [Accessed Apr 09,

2018].

[2] N. Narang and S. Kasera, 2G Mobile Networks GSM and HSCSD. New Delhi,

India: Tata Mac-GrowHill, 2007.

[3] 3GPP, “Network architecture,” TS 23.002 V12.5.0, Sep. 2014.

[4] 3GPP, “Service requirements for the User Data Convergence (UDC),” TR

22.985 V14.0.0, Mar. 2017.

[5] 3GPP, “User Data Convergence (UDC); Technical realization and information

flows; Stage 2,” TS 23.335 V14.0.0, May 2017.

[6] 3GPP, “User Data Convergence (UDC); User data repository access protocol

over the Ud interface; Stage 3,” TS 29.335 V14.0.0, Apr. 2017.

[7] J. Sermersheim, “Lightweight Directory Access Protocol (LDAP): The

Protocol,” RFC 4511, June 2006.

[8] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.

Nielsen, S. Thatte, and D. Winer. “Simple Object Access Protocol (SOAP)

1.1,” W3C Note, 08 May 2000. [Online]. Available:

https://www.w3.org/TR/2000/NOTE-SOAP-20000508. [Accessed Apr. 7,

2018].

[9] ITU-T, “Information Technology – Open Systems Interconnection – The

Directory: Models,” X-501 Recommendation, 2005.

[10] RACLE, “Sun Directory Server Enterprise Edition 7.0 Administration Guide,”

[Online]. Available: https://docs.oracle.com/cd/E19424-01/820-

4809/bcadz/index.html. [Accessed Feb 22, 2018]

[11] ZyTrax, “Chapter 7 Referrals, Aliases & Proxies (Chaining),” [Online].

Available:

http://www.zytrax.com/books/ldap/ch7/referrals.html. [Accessed Feb 22, 2018]

[12] ZyTrax, “LDAP Concepts & Overview,” [Online]. Available:

https://docs.oracle.com/cd/E19424-01/820-4809/bcadz/index.html
https://docs.oracle.com/cd/E19424-01/820-4809/bcadz/index.html
http://www.zytrax.com/books/ldap/ch7/referrals.html

53

http://www.zytrax.com/books/ldap/ch2/index.html#database.

[Accessed Feb 16, 2018]

[13] Microsoft, “Understanding the Role of Directory Services Versus Relational

Databases,” Sep. 2009. [Online]. Available:

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-

server-2000/bb727070(v=technet.10).

[Accessed Feb 16, 2018]

[14] UnboundID, “Why Use LDAP,” [Online]. Available:

https://www.ldap.com/why-use-ldap. [Accessed Feb 16, 2018]

[15] E. Grafström, “Resilient and optimized LDAP database implementation for a

large scale HLR/HSS,” M.S. thesis, Uppsala University, Uppsala, Sweden,

2012.

[16] O. F. Sogunle, “A Unified Data Repository for Rich Communication Services,”

M.S. thesis, Rhodes University, South Africa, 2016.

[17] D. Chappell, Introducing OData: Data access for the web, the cloud, mobile

devices, and more. Microsoft Whitepaper, May 2011.

[18] J. T. Hackos, “WHAT IS AN INFORMATION MODEL & WHY DO YOU

NEED ONE?,” Content, Computing, and Commerce – Technology & Trends,

vol. 10, No. 1, February 2002. [Online]. Available:

https://gilbane.com/artpdf/GR10.1.pdf. [Accessed Feb 21, 2018]

[19] UML specification website: http://www.omg.org/spec/UML

[20] L. D. Xu, W. He and S. Li, "Internet of Things in Industries: A Survey,"

in IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233-2243,

Nov. 2014.

[21] R. Minerva, A. Biru and D. Rotondi, Towards a definition of the Internet of

Things (IoT). IEEE Internet Initiative, May 2015.

[22] M. Chen, Y. Miao, Y. Hao and K. Hwang, "Narrow Band Internet of

Things," in IEEE Access, vol. 5, pp. 20557-20577, 2017.

[23] G. A. Akpakwu, B. J. Silva, G. P. Hancke and A. M. Abu-Mahfouz, "A Survey

on 5G Networks for the Internet of Things: Communication Technologies and

Challenges," in IEEE Access, vol. 6, pp. 3619-3647, 2018.

http://www.zytrax.com/books/ldap/ch2/index.html#database
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2000/bb727070(v=technet.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2000/bb727070(v=technet.10)
https://gilbane.com/artpdf/GR10.1.pdf
http://www.omg.org/spec/UML

54

[24] 3GPP, “FS_SMARTER – massive Internet of Things,” TR 22.861 V14.1.0,

Sep. 2016.

[25] 3GPP LOW POWER WIDE AREA TECHNOLOGIES, GSMA WHITE PAPER

[26] C. Perera, P. P. Jayaraman, A. Zaslavsky, D. Georgakopoulos and P. Christen,

"Sensor discovery and configuration framework for the Internet of Things

paradigm," 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul,

2014, pp. 94-99.

[27] C. Perera, P. Jayaraman, A. Zaslavsky, P. Christen and D. Georgakopoulos,

"Dynamic configuration of sensors using mobile sensor hub in internet of

things paradigm," 2013 IEEE Eighth International Conference on Intelligent

Sensors, Sensor Networks and Information Processing, Melbourne, VIC, 2013,

pp. 473-478.

[28] P. Waher, and R. Klauck, “Internet of Things-Discovery,” XEP-0347, Sep.

2017.

[29] Amazon, “Amazon AWS IoT Device Management Features,” [online].

Available: https://aws.amazon.com/iot-device-management/features/.

[Accessed Mar 22, 2018]

[30] Microsoft, “Microsoft Azure IoT Hub,” [online]. Available:

https://azure.microsoft.com/en-us/services/iot-hub/. [Accessed Mar 22, 2018]

[31] A. Pras, and J. Schoenwaelder, “On the Difference between Information

Models and Data Models,” RFC 3444, January 2003.

[32] 3GPP, “Telecommunication management; User Data Convergence (UDC);

Common baseline information model (CBIM),” TS 32.182 V14.0.0, Apr. 2017.

[33] 3GPP, “Evolved Packet System (EPS); Mobility Management Entity (MME)

and Serving GPRS Support Node (SGSN) related interfaces based on Diameter

protocol, ” TS 29.272 V13.8.0, Jan. 2017.

[34] V. Fajardo, J. Arkko, J. Loughney, and G. Zorn, “Diameter Base Protocol”.

RFC 6733, Oct. 2012.

[35] NetIQ, “NetIQ OpenLDAP – Based SDK and Extended Library,” [Online].

Available: ftp://sdk.provo.novell.com/ndk/cldap/builds/2016/NetIQ-

OpenLDAP-based-SDK.pdf. [Accessed Feb 26, 2018]

https://aws.amazon.com/iot-device-management/features/
https://azure.microsoft.com/en-us/services/iot-hub/
ftp://sdk.provo.novell.com/ndk/cldap/builds/2016/NetIQ-OpenLDAP-based-SDK.pdf
ftp://sdk.provo.novell.com/ndk/cldap/builds/2016/NetIQ-OpenLDAP-based-SDK.pdf

55

[36] M. Muehlfeld, P, Bokoč, T. Čapek, and Ella Deon Ballard, “RED HAT

DIRECTORY SERVER 10, PLUG-IN GUIDE,” [Online]. Available:

https://access.redhat.com/documentation/en-

us/red_hat_directory_server/10/html/plug-in_guide/index. [Accessed Feb 27,

2018]

[37] 389 Directory Server, “Plugin Design,” [Online]. Available:

http://directory.fedoraproject.org/docs/389ds/design/plugins.html. [Accessed

Feb 27, 2018]

[38] 3GPP, “Service requirements for Machine-Type Communications (MTC);

Stage 1,” TS 22.368 V14.0.1, Oct. 2017.

[39] 3GPP, “Diameter applications; 3GPP specific codes and identifiers,” TS 29.230

V14.7.0, Jan. 2018.

[40] 3GPP, 2017. “Non-Access-Stratum(NAS) protocol for Evolved Packet

System(EPS); Stage 3”. TS 24.301, 3rd Generation Partnership Project (3GPP).

[41] R. Stewart, “Stream Control Transmission Protocol,” RFC 4960, Sep. 2007.

[42] TCPDUMP website: http://www.tcpdump.org/

[43] Wireshark website: https://www.wireshark.org/

[44] R website: https://www.r-project.org/

[45] X. Wang, H. Schulzrinne, D. Kandlur and D. Verma, "Measurement and

Analysis of LDAP Performance," in IEEE/ACM Transactions on Networking,

vol. 16, no. 1, pp. 232-243, Feb. 2008.

https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/plug-in_guide/index
https://access.redhat.com/documentation/en-us/red_hat_directory_server/10/html/plug-in_guide/index
http://directory.fedoraproject.org/docs/389ds/design/plugins.html
http://www.tcpdump.org/
https://www.wireshark.org/
https://www.r-project.org/

